Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Benoit Lavraud (Ed.)The amateur radio community is a global, highly engaged, and technical community with an intense interest in space weather, its underlying physics, and how it impacts radio communications. The large-scale observational capabilities of distributed instrumentation fielded by amateur radio operators and radio science enthusiasts offers a tremendous opportunity to advance the fields of heliophysics, radio science, and space weather. Well-established amateur radio networks like the RBN, WSPRNet, and PSKReporter already provide rich, ever-growing, long-term data of bottomside ionospheric observations. Up-and-coming purpose-built citizen science networks, and their associated novel instruments, offer opportunities for citizen scientists, professional researchers, and industry to field networks for specific science questions and operational needs. Here, we discuss the scientific and technical capabilities of the global amateur radio community, review methods of collaboration between the amateur radio and professional scientific community, and review recent peer-reviewed studies that have made use of amateur radio data and methods. Finally, we present recommendations submitted to the U.S. National Academy of Science Decadal Survey for Solar and Space Physics (Heliophysics) 2024–2033 for using amateur radio to further advance heliophysics and for fostering deeper collaborations between the professional science and amateur radio communities. Technical recommendations include increasing support for distributed instrumentation fielded by amateur radio operators and citizen scientists, developing novel transmissions of RF signals that can be used in citizen science experiments, developing new amateur radio modes that simultaneously allow for communications and ionospheric sounding, and formally incorporating the amateur radio community and its observational assets into the Space Weather R2O2R framework. Collaborative recommendations include allocating resources for amateur radio citizen science research projects and activities, developing amateur radio research and educational activities in collaboration with leading organizations within the amateur radio community, facilitating communication and collegiality between professional researchers and amateurs, ensuring that proposed projects are of a mutual benefit to both the professional research and amateur radio communities, and working towards diverse, equitable, and inclusive communities.more » « less
-
Abstract We demonstrate a novel method for observing Large Scale Traveling Ionospheric Disturbances (LSTIDs) using high frequency (HF) amateur radio reporting networks, including the Reverse Beacon Network (RBN), Weak Signal Propagation Reporter Network (WSPRNet), and PSKReporter. LSTIDs are quasi‐periodic variations in ionospheric densities with horizontal wavelengths >1,000 km and periods between 30 and 180 min. On Nov 3, 2017, LSTID signatures were observed simultaneously over the continental United States in amateur radio, SuperDARN HF radar, and GNSS Total Electron Content with a period of ∼2.5 hr, propagation azimuth of ∼163°, horizontal wavelength of ∼1680 km, and phase speed of ∼1,200 km hr−1. SuperMAG SME index enhancements and Poker Flat Incoherent Scatter Radar measurements suggest the LSTIDs were driven by auroral electrojet intensifications and Joule heating. This novel measurement technique has applications in future scientific studies and for assessing the impact of LSTIDs on HF communications.more » « less
An official website of the United States government
